

International Courses Offered in E.T.S.I. Telecomunicación 2020/2021

Courses taught in English during 2020-21

Area	Acronym	Name	ECTS	Semester ¹	UVa subject code
Signal Theory &	ICTA	Information and communications technology in automotive industry		1	46675
Communications	WTS	Wireless Telecommunications Systems		2	45044
Mathematics	AM	Advanced Mathematics	6	2	75095
Mathematics	NA	Numerical Algorithms	6	2	75101
Economy	ECO	Introduction to business economics and administration		2	75100
Signal Theory, Communications, Telematic Engineering and Electronics	PROJECT	PROJECT (Internship + TFG) or (Internship + TFM)	18 (6+12)	1 or 2	45035 + 45036 (TFG) or 45035 + 53817 (TFM)

¹ 1: Autumn (28th September 2020 to 12th February 2021)

2: Spring (15th February 2021 to 2nd July 2021)

Project

In each semester, we will offer different international projects. Each project comprises two UVa subjects: internship and TFG/TFM (depending on the study cycle of the student). **TFG/TFM can only be taken by students in their last year of their degree**. The project can be taken in any of the two semesters and it is also possible to take it during the full year.

Students will have to develop a project in the area of Telecommunications. Two departments will offer projects to international students: Signal Theory, Communications and Telematic Engineering and Electronics.

When a student wants to take a project, she/he must contact the ETSIT International Coordinator, CRI (<u>subireccion.relaciones.tel@uva.es</u>) and send her/him both a

Curriculum Vitae and areas of interest. If the CRI considers that she/he is eligible, the CRI will distribute the CV between the different research groups working in the areas suggested by the students. Research groups interested in the students will contact her/him directly and offer different topics for the project. When the student reaches an agreement with the research group, she/he will contact CRI and the research group to confirm the agreement. This process has to be completed before signing any learning agreement.

Maximum number of students in each course

The maximum number of admitted student in each course is 20.

English level for students

All students are required a B2 level of English.

Location

Classes will be planned in ETSITs rooms (classroom and laboratories). The project will be taken in the premises of each research group.

Classes schedule

Autumn Semester

	Monday	Tuesday	Wednesday	Thursday	Friday
9h		ICTA Sem13/1L014	ICTA Sem13/1L014		
10h		ICTA Sem13/1L014	ICTA Sem13/1L014		
11h			ICTA Sem13/1L014		
12h			ICTA Sem13/1L014		

Spring Semester

	Monday	Tuesday	Wednesday	Thursday	Friday
9h	AM A108	NA A108	AM A108	NA 2L009	
10h	AM A108	NA A108	AM A108	NA 2L009	
11h	ECO A108		ECO A108		
12h	ECO A108		ECO A108		
16h					
17h					
18h		WTS (T/L) A10/2L004-5			
19h		WTS (T/L) A10/2L004-5		WTS (S/L) A10/2L004-5	
20h				WST (S/L) A10/2L004-5	

Contact

ETSIT International Coordinator (CRI) is Ramón J. Durán Barroso: <u>subireccion.relaciones.tel@uva.es</u>

Courses Syllabus:

	Number of ECTS:	6 ECTS
n	Language:	English
1	n	

Lecturer(s) and contact:

- Dr. Juan Carlos Aguado Manzano (jaguado@tel.uva.es)
- Dr. Ignacio de Miguel Jiménez (Ignacio.miguel@tel.uva.es)

Learning goals:

At the end of this sections, the student should be able to:

- Use commercial software tools to analysis CAN messages from car devices and car applications.
- Enumerate and describe the most important CAN protocol parameters of physical and upper layers.
- Enumerate and describe the basic communication elements of intra-vehicular network communications under CAN protocol.
- Design and program very simple pieces of code to emulate intra-vehicle communications.
- Use carmakers documentation to analyze car devices and car applications.
- Describe vehicle-to-infrastructure and vehicle-to-vehicle communication services

Contents:

- 1. Introduction to Vehicle Telematics.
- 2. Intra-Vehicular communications. CAN Bus. CANoe.
- 3. Programming in CAPL.
- 4. Intra-vehicular communications. Other standards.
- 5. Design of ECUs.
- 6. ECU diagnosis.

Lab:

- 1. Physical layer of the CAN bus.
- 2. CAN analysis: IGN signals, TeleAid Info-Call and Volume Control.
- 3. CAN analysis: Airbag signals.
- 4. CAN analysis: Real car trace.
- 5. Sending CAN messages using CANoe.
- 6. CAPL Program.
- 7. D2B Optical Bus Analyzer.
- 8. MOST Optical Bus Analyzer.
- 9. ECU simulation using CANister. Breathalyzer design and development.
- 10. Datalogger. Diagnostics.

Prerequisites:

This is an intermediate course, intended for learners with a background in computer and electrical engineering. To succeed in this course, you should have the following knowledge prerequisites:

- Intermediate programming experience, preferable in C.
- Familiarity with protocols, communications networks and telematic services.
- Basic use of laboratory equipment, mainly Oscilloscopes.

Code number:	45044	Number of ECTS:	6 ECTS	
Semester:	Spring	Language:	English	
Lecturer(s) and cont Dr. Ramón	act: de la Rosa Steinz (<u>ramro</u>	os@tel.uva.es)		
 Know the o Work with i Work with i Identify training Connect the Interpret the Estimate the Enumerate 	regulations related to the specifications related to nsmissions with spectrue basic parameters that the technology involved i e radio coverage in poir and describe the comm	the field of the radio amateur ne radio frequency spectrum m radio telecommunication syst m analysis equipment. characterise a radio frequency n the radio telecommunication	anagement. ems. v system. n systems.	
Concept re	UCTION TO RADIO: vision. Logarithmic unit: experiment.	s. The radio frequency spectru	m. Radio amateur operation	
Review of c	YSTEMS TECHNOLOGY: haracteristics and para communication systems	meters defining the antennas.	Antenna feeders. Antennas	
Receivers t	AND TRANSMITTERS: echnology. Transmitters f the radio. Software de	s technology. Interpreting tran fined radio (SDR).	sceiver wiring diagrams. The	
Amplitude		broadcasting. Frequency modu Isting: RDS y DAB. Modulating		
Introductio budget. Typ	oes of satellites. Satellite	MUNICATIONS: arameters that influence the co es and radio amateur operatio Coverage estimation with soft	n. Related modulating	

- Basic standards. Second generation (2G): GSM, GPRS and EDGE. Modulations related to 2G. MSK, GMSK. Third generation (3G) and subsequent generations. UMTS, LTE, 5G. Modulations related to 3G and subsequent generations. Spread spectrum.
- SHORT-RANGE WIRELESS DATA COMMUNICATIONS: Bluetooth. IEEE 802.11 – ISO/IEC 8802-11 (Wi-Fi). Other technologies.

Prerequisites:

It will be very helpful some basic knowledge about electronics to understand schemas, and ability to understand the concept of electromagnetic waves and its location in the radio frequency spectrum.

About the applied part of the subject, it will be helpful some basic knowledge of the laboratory of electronics instrumentation (oscilloscope, multimeter, function generator), reasonable manual skills and being resourceful to build small prototypes.

Advanced Mathematics (AM)					
Code number:	75095	Number of ECTS:	6 ECTS		
Semester:	Spring	Language:	English		
Lecturer(s) and conta	Lecturer(s) and contact:				

Dr. Eduardo Cuesta Montero (<u>eduardo@mat.uva.es</u>)

Learning goals:

At the end of this sections, the student should be able to:

- Learning skills and expertise on complex variable and vectorial calculus technics.
- Learning skills on the basic analytical methods to solve partial differential equations.
- Posing and solving problems related to the subjects of the course.
- Discovering the relationship between the subjects of the course and other subjects in fact the ones related to Telecommunication and Electronic Engineering.
- Using recommended bibliography to assess ideas and results.
- Understanding mathematical models related to Telecommunication and Electronic Engineering.

Contents:

1. CURVES AND SURFACES:

Parametric curves, geometric curves, and orientation. Parametric surfaces, tangent plane, and orientation. Implicit's and Inverse's Theorem. Implicit curves and surfaces.

SCALAR AND VECTOR FIELDS: Gradient, equipotential varieties, curl, divergence, and Laplacian. Conservative fileds, solenoidal fields, and potentials.

3. LINE INTEGRALS:

Line integrals for scalar functions. Parametrizing with respect to arc lenght. Fields along curves. Green's Formula. Simply connected domains, and potentials.

4. SURFACE INTEGRALS:

Integral in several variables. Surface integration of scalar functions. Parametric surface area. Field flux throughout a surface. Surfaces with oriented border. Stoke's Theorem. Gauss Theorem.

- INTRODUCTION TO COMPLEX VARIABLE FUNCTIONS: Basic properties of complex numbers. Complex variable functions. Geometric representation of elementary functions.
- HOLOMORPHIC FUNCTIONS: Limits and continuity. Holomorphic functions. Cauchy-Riemann's conditions. Geometrical meaning. Elementary holomophic functions.
- COMPLEX INTEGRATION: Definitions and properties. Relationship with the line integral. Cauchy's Integral Formula. Taylor expansions.
- 8. POWER EXPANSIONS:

Sequences and series of complex numbers. Convergence of sequences and series of functions. Integration term by term. Power expansions. Convergence radius. Zero order. Taylor's expansions. Properties of functions defined by power expansions. Analytic functions.

- 9. LAURENT'S EXPANSIONS: Singularity classification. Development of Laurent's expansions.
- 10. FOURIER EXPANSIONS: Representation of functions in terms of Fourier expansions. Convergence and applications.
- 11. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS: Background in partial differential equations. Eigenvalue Problems and Fourier expansions.
- 12. SEPARATED VARIABLE METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS: General problema statement. Applications to equations of physic mathematic.

Prerequisites:

Some background on Calculus and Linear Algebra is strongly recommended.

Joue nu	ımber:	75101	Number of ECTS:	6 ECTS
Semeste	er:	Spring	Language:	English
Lecture	r(s) and contact:			
•	Dr. Óscar Angulo	o Torga (<u>oscar@mat.u</u>	va.es)	
Learning At the e • • • •	nd of this section Understand limit Understand how computations or Understand how solve mathemat Learn how to sol methods. Learn how to sol Understand how	v computers represent n computers. v we describe errors and ical equations and app ve a system of linear of ve least-squares prob v to approximate the f ve definite integrals a	ethods and the need for nu t numbers and how these in nd approximations that resi proximate mathematical fu equations numerically using	npact mathematical ult from using computers to nctions. g direct and iterative g polynomials.
•	Demonstrate the	ve complex differenti	erical techniques to simple	problems drawn from
•	Demonstrate the telecommunicat	ve complex differenti e applications of nume	erical techniques to simple	problems drawn from
• Content	Demonstrate the telecommunicat	ve complex differenti e applications of nume ions and electronic er	erical techniques to simple	problems drawn from
• Content	Demonstrate the telecommunicat	ve complex differenti e applications of nume ions and electronic er	erical techniques to simple ngineering fields.	problems drawn from
• Content 1.	Demonstrate the telecommunicat	ive complex differenti e applications of nume ions and electronic er mming. for solving of linear sy	erical techniques to simple ngineering fields.	problems drawn from
• Content 1. 2.	Demonstrate the telecommunicat	ve complex differenti e applications of nume ions and electronic er mming. for solving of linear sy pproximation.	erical techniques to simple ngineering fields.	problems drawn from
• Content 1. 2. 3. 4.	Demonstrate the telecommunicat s: MATLAB program Direct methods to Least squares ap	ve complex differenti e applications of nume ions and electronic er nming. for solving of linear sy proximation. and nonlinear.	erical techniques to simple ngineering fields.	problems drawn from
• 1. 2. 3. 4. 5.	Demonstrate the telecommunicat s: MATLAB program Direct methods to Least squares ap Iteration: linear a	ve complex differenti e applications of nume ions and electronic er nming. for solving of linear sy proximation. and nonlinear. avalue problem.	erical techniques to simple ngineering fields.	problems drawn from
• 1. 2. 3. 4. 5.	Demonstrate the telecommunicat	ve complex differenti e applications of nume ions and electronic er nming. for solving of linear sy proximation. and nonlinear. avalue problem.	erical techniques to simple ngineering fields. stems.	problems drawn from
• 1. 2. 3. 4. 5. 6.	Demonstrate the telecommunicat	ve complex differenti e applications of nume ions and electronic er mming. for solving of linear sy proximation. and nonlinear. avalue problem. polation.	erical techniques to simple ngineering fields. stems.	problems drawn from
• Content 1. 2. 3. 4. 5. 6. 7.	Demonstrate the telecommunicat S: MATLAB program Direct methods f Least squares ap Iteration: linear The matrix eigen Lagrangian inter Numerical integr Trigonometric in	ve complex differenti e applications of nume ions and electronic er mming. for solving of linear sy proximation. and nonlinear. avalue problem. polation.	erical techniques to simple origineering fields. stems.	problems drawn from

	umber:	75100	Number of ECTS:	6 ECTS	
Semester:		Spring	Language:	English	
Lecture •	r(s) and contact: Dr. Guillermo Al	eixandre Mendiza	bal (galeixam@eco.uva.es)		
Learnin At the e	end of this section Apply the basic Identify the diffe quantities of eq Distinguish the t	erent types of com uilibrium in each c ypes of costs of th	conomy and the company to th panies, market structures, bei	ng able to calculate prices and s of financing.	
Conten	ts:				
1.	Preliminary cond	cepts in economy.			
2.	The enterprise and the entrepreneur.				
3.	Competitive markets in the short term: demand and supply.				
4.	Production, cost	s, revenues and b	usiness benefits.		
5.	Firms in the peri	fect competition n	narket.		
6.	Firms in non-competitive markets.				
	Project appraisal decisions in the company.				
7.			e company and business financ	ing	